Asplund Decomposition of Monotone Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asplund Decomposition of Monotone Operators

We establish representations of a monotone mapping as the sum of a maximal subdifferential mapping and a ‘remainder’ monotone mapping, where the remainder is either skew linear, or more broadly ‘acyclic’, in the sense that it contains no nontrivial subdifferential component. Examples are given of indecomposable and acyclic operators. In particular, we present an explicit nonlinear acyclic opera...

متن کامل

Pairs of Monotone Operators

This note is an addendum to Sum theorems for monotone operators and convex functions. In it, we prove some new results on convex functions and monotone operators, and use them to show that several of the constraint qualifications considered in the preceding paper are, in fact, equivalent. Introduction We continue with the notation and the numbering of [4]. For the moment, we shall assume that E...

متن کامل

Some results on pre-monotone operators

‎In this paper‎, ‎some properties of pre-monotone operators are proved‎. ‎It is shown that in a reflexive Banach space‎, ‎a full domain multivalued $sigma$-monotone operator with sequentially norm$times$weak$^*$ closed graph is norm$times$weak$^*$ upper semicontinuous‎. ‎The notion of $sigma$-convexity is introduced and the‎ ‎relations between the $sigma$-monotonicity and $sigma$-convexity is i...

متن کامل

Monotone Operators without Enlargements

Enlargements have proven to be useful tools for studying maximally monotone mappings. It is therefore natural to ask in which cases the enlargement does not change the original mapping. Svaiter has recently characterized non-enlargeable operators in reflexive Banach spaces and has also given some partial results in the nonreflexive case. In the present paper, we provide another characterization...

متن کامل

Multiscale Homogenization of Monotone Operators

In this paper we prove a generalization of the iterated homogenization theorem for monotone operators, proved by Lions et al. in [20] and [21]. Our results enable us to homogenize more realistic models of multiscale structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2007

ISSN: 1052-6234,1095-7189

DOI: 10.1137/060658357